Bootstrap-after-Bootstrap Model Averaging for Reducing Model Uncertainty in Model Selection for Air Pollution Mortality Studies

نویسندگان

  • Steven Roberts
  • Michael A. Martin
چکیده

BACKGROUND Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as a method of allowing for model uncertainty in this context. OBJECTIVES To propose an extension (double BOOT) to a previously described bootstrap model-averaging procedure (BOOT) for use in time series studies of the association between PM and mortality. We compared double BOOT and BOOT with Bayesian model averaging (BMA) and a standard method of model selection [standard Akaike's information criterion (AIC)]. METHOD Actual time series data from the United States are used to conduct a simulation study to compare and contrast the performance of double BOOT, BOOT, BMA, and standard AIC. RESULTS Double BOOT produced estimates of the effect of PM on mortality that have had smaller root mean squared error than did those produced by BOOT, BMA, and standard AIC. This performance boost resulted from estimates produced by double BOOT having smaller variance than those produced by BOOT and BMA. CONCLUSIONS Double BOOT is a viable alternative to BOOT and BMA for producing estimates of the mortality effect of PM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On properties of predictors derived with a two-step bootstrap model averaging approach - A simulation study in the linear regression model

In many applications of model selection there is a large number of explanatory variables and thus a large set of candidate models. Selecting one single model for further inference ignores model selection uncertainty. Often several models fit the data equally well. However, these models may differ in terms of the variables included and might lead to different predictions. To account for model se...

متن کامل

Population dynamic of Acipenser persicus by Monte Carlo simulation model and Bootstrap method in the southern Caspian Sea (Case study: Guilan province)

In this study population dynamic of Acipenser persicus with age structure model by Monte Carlo and Bootstrap approach was studied. Length frequency data a total of 4376 specimens collected from beach seine, fixed gill net and conservation force in coastal Guilan province during 2002 to 2012. Data imported to FiSAT II for length frequency analyze by ELEFAN 1. K, L∞ and t0 estimated 203, 0.08 and...

متن کامل

A Bootstrap Interval Robust Data Envelopment Analysis for Estimate Efficiency and Ranking Hospitals

Data envelopment analysis (DEA) is one of non-parametric methods for evaluating efficiency of each unit. Limited resources in healthcare economy is the main reason in measuring efficiency of hospitals. In this study, a bootstrap interval data envelopment analysis (BIRDEA) is proposed for measuring the efficiency of hospitals affiliated with the Hamedan University of Medical Sciences. The propos...

متن کامل

The practical utility of incorporating model selection uncertainty into prognostic models for survival data

Predictions of disease outcome in prognostic factor models are usually based on one selected model. However, often several models fit the data equally well, but these models might differ substantially in terms of included explanatory variables and might lead to different predictions for individual patients. For survival data we discuss two approaches for accounting for model selection uncertain...

متن کامل

THEORY AND METHODS A bootstrap method to avoid the effect of concurvity in generalised additive models in time series studies of air pollution

Background: In recent years a great number of studies have applied generalised additive models (GAMs) to time series data to estimate the short term health effects of air pollution. Lately, however, it has been found that concurvity—the non-parametric analogue of multicollinearity—might lead to underestimation of standard errors of the effects of independent variables. Underestimation of standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2010